skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aasjord, Anne E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cell surface properties can strongly mediate microbial interactions with predators in soil and host‐pathogen systems. Yet, the role of microbial surface properties in avoiding or enhancing predation in the ocean is less well known. Appendicularians are globally abundant marine suspension feeders that capture marine microorganisms in a complex mucous filtration system. We used artificial microspheres to test whether the surface properties of prey particles influenced selection by the appendicularian,Oikopleura dioica. We used a range of microsphere sizes (0.5, 1, 2, and 3 μm), concentrations (~ 103–106particles mL−1), and two charges (amine‐modified, more positive vs. carboxylate‐modified, more negative) to represent open‐ocean microbial communities. We found that appendicularians selected between the particles of different charge. More negatively charged particles were enriched in the gut by up to 3.8‐fold, while more positive particles were enriched in the mucous filters by up to 4.7‐fold, leading to different particle fates. These results expand understanding of the mechanisms by which filter‐feeders select between prey and reveal a mechanism by which marine bacteria could rapidly alter their susceptibility to predation, either through adaption or acclimation. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026